从上图可以看到,规律如下,如果我们把p和q约成最简分数(6/4->3/2):
- 关于y轴对称偶数次,x轴对称奇数次,我们会到达2
- 关于y轴对称奇数次,x轴对称偶数次,我们会到达0
- 关于y轴对称奇数次,x轴对称奇数次,我们会到达1
- 关于y轴对称偶数次,x轴对称偶数次,不可能,因为这代表可以继续约分
所以我们求gcd(p, q)即可,时间复杂度O(log(p + q)),代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution{ | |
public: | |
int mirrorReflection(int p, int q) { | |
int divisor = gcd(p, q); | |
p /= divisor; | |
q /= divisor; | |
int ans = 1; | |
if (p % 2 == 0)ans = 2; | |
if (q % 2 == 0)ans = 0; | |
return ans; | |
} | |
private: | |
int gcd(int a, int b) | |
{ | |
if (a < b)return gcd(b, a); | |
if (!b)return a; | |
return gcd(b, a % b); | |
} | |
}; |
No comments:
Post a Comment