This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
int swimInWater(vector<vector<int>>& grid) { | |
int m = grid.size(), n = m ? grid[0].size() : 0; | |
m_sz = vector<int>(m * n, 1); | |
m_uf = vector<int>(m * n, 0); | |
for (int i = 0; i < m * n; ++i)m_uf[i] = i; | |
unordered_map<int, set<pair<int, int>>> edges; | |
pair<int, int> dirs[4] = { {1, 0}, {-1, 0}, {0, 1}, {0, -1} }; | |
for (int i = 0; i < m; ++i) | |
{ | |
for (int j = 0; j < n; ++j) | |
{ | |
for (int k = 0; k < 4; ++k) | |
{ | |
int x = i + dirs[k].first, y = j + dirs[k].second; | |
if (x >= 0 && x < m && y >= 0 && y < n && grid[i][j] >= grid[x][y]) | |
edges[grid[i][j]].insert(make_pair(x * n + y, i * n + j)); | |
} | |
} | |
} | |
int height = 0; | |
while (height < m * n) | |
{ | |
for (auto& edge : edges[height]) | |
connect(edge.first, edge.second); | |
if (find(0, m * n - 1))break; | |
++height; | |
} | |
return height; | |
} | |
private: | |
vector<int> m_uf; | |
vector<int> m_sz; | |
void connect(int i, int j) | |
{ | |
int rootI = root(i), rootJ = root(j); | |
if(rootI == rootJ)return; | |
if (m_sz[rootI] <= m_sz[rootJ]) | |
{ | |
m_uf[rootI] = rootJ; | |
m_sz[rootJ] += m_sz[rootI]; | |
} | |
else | |
{ | |
m_uf[rootJ] = rootI; | |
m_sz[rootI] += m_sz[rootJ]; | |
} | |
} | |
bool find(int i, int j) | |
{ | |
return root(i) == root(j); | |
} | |
int root(int i) | |
{ | |
if (m_uf[i] == i)return i; | |
int r = root(m_uf[i]); | |
m_uf[i] = r; | |
return r; | |
} | |
}; |
可以看到Union Find方法的某些缺点,如果高度的范围太大,union find就会很不效率。但是这也给我们提供了一个很好的思路,为什么我们要顺序的搜索最小的高度呢?如果我们binary search,显然我们知道答案所在的范围为[minHeignt, maxHeignt],我们也有O(n^2)的方法来验证给定height,从起点能否到终点。显然二分也是一个很好的方法,时间复杂O(n^2 * log(n)),空间复杂度 worst case O(n^2),代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
int swimInWater(vector<vector<int>>& grid) { | |
int m = grid.size(), n = m? grid[0].size(): 0, lo = n && m? grid[0][0]: 0, hi = m * n - 1; | |
while(lo < hi) | |
{ | |
int mid = lo + (hi - lo) / 2; | |
unordered_set<int> visited; | |
if(canReach(grid, mid, 0, m * n - 1, visited)) | |
hi = mid; | |
else | |
lo = mid + 1; | |
} | |
return lo; | |
} | |
private: | |
bool canReach(vector<vector<int>>& grid, int t, int curr, int target, unordered_set<int>& visited) | |
{ | |
int m = grid.size(), n = m? grid[0].size(): 0, i = curr / n, j = curr % n; | |
if(curr == m * n - 1)return true; | |
visited.insert(curr); | |
pair<int, int> dirs[4] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; | |
for(int k = 0; k < 4; ++k) | |
{ | |
int x = i + dirs[k].first, y = j + dirs[k].second; | |
if(x >= 0 && x < m && y >= 0 && y < n && grid[x][y] <= t && visited.find(x * n + y) == visited.end()) | |
{ | |
if(canReach(grid, t, x * n + y, target, visited))return true; | |
} | |
} | |
return false; | |
} | |
}; |
除此之外我们还有用类似Dijkstra的解法。我们用f(v)表示从起点到当前节点v所经过的最大高度,我们可以看出f(v)是沿路径递增的。那么我们可以用类似的方法证明Dijkstra也可以用来求到节点v的最小f(v)的值,证明如下:
- 对于v = start node,显而易见最小的f(v)就是起始节点的高度
- 假设存在set = {v1, v2,...,vi},我们求得了set中所有节点的最小f(v)值。那么对于我们即将从priority queue上展开的下一个节点vk,其对应的值就是最小的f(vk)值
- 我们可以明确的是priority queue上对应的值,是set中所有路径到达vk的最小f(vk)值
- 假设存在另一条路径通过set之外某个节点vj到达vk,并且这条路径上的f(vk)值比priority queue上对应的值要小。那么由于f(v)在路径上是递增的,那么显然vj要比vk更先被展开,这与我们的假设“vj是set之外的某个节点”矛盾
时间复杂度O(n^2 log n),最坏的情况可能展开n^2个node,时间复杂度O(n^2),代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
int swimInWater(vector<vector<int>>& grid) { | |
int n = grid.size(), target = n * n - 1, res = 0; | |
if(!n)return 0; | |
//we can use the same way to prove dijkstra also works for this problem | |
priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> pq; | |
pq.push(make_pair(grid[0][0], 0)); | |
pair<int, int> dirs[4] = {{0, 1}, {0, -1}, {1, 0}, {-1, 0}}; | |
unordered_set<int> visited; | |
while(visited.size() < n * n) | |
{ | |
auto p = pq.top(); | |
pq.pop(); | |
if(visited.find(p.second) != visited.end())continue; | |
visited.insert(p.second); | |
//dijkstar adds result from smallerst to largest | |
res = max(res, p.first); | |
if(p.second == target)return res; | |
int path = p.first, i = p.second / n, j = p.second % n; | |
for(int k = 0; k < 4; ++k) | |
{ | |
int x = i + dirs[k].first, y = j + dirs[k].second; | |
if(x >= 0 && x < n && y >= 0 && y < n && visited.find(p.second) != visited.end()) | |
pq.push(make_pair(grid[x][y], x * n + y)); | |
} | |
} | |
return -1; | |
} | |
}; |
No comments:
Post a Comment