Sunday, February 18, 2018

[LintCode]Longest Common Subsequence


经典的DP问题,解法也可以扩展到很多其他的题目。假设输入字符串为s1和s2,我们用DP[i][j]表示s1中前i个字符和s2中前j个字符的LCS,我们有递推公式:

  • DP[i][j] = DP[i - 1][j - 1] + 1, if s1[i] == s2[j]
  • else, DP[i][j] = max(DP[i - 1][j], DP[i][j - 1])
假设输入串长度分别为n和m,时间和空间复杂度均为O(m * n),代码如下:


class Solution {
public:
/**
* @param A: A string
* @param B: A string
* @return: The length of longest common subsequence of A and B
*/
int longestCommonSubsequence(string &A, string &B) {
// write your code here
int lenA = A.size(), lenB = B.size();
//dp[i][j] represents LCS in first i chars in A and first j chars in B;
//dp[i][j] = dp[i - 1][j - 1] + 1, if A[i] == B[j]
//otherwise, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
//base case: dp[i][0] = 0, dp[0][j] = 0
vector<vector<int>> dp(lenA + 1, vector<int>(lenB + 1, 0));
for(int i = 0; i < lenA; ++i)
{
for(int j = 0; j < lenB; ++j)
{
dp[i + 1][j + 1] = A[i] == B[j]? dp[i][j] + 1: max(dp[i + 1][j], dp[i][j + 1]);
}
}
return dp[lenA][lenB];
}
};


Longest Common Substring类似,我们可以用滚动数组进行优化,空间可以优化到O(n),代码入下:


class Solution {
public:
/**
* @param A: A string
* @param B: A string
* @return: The length of longest common subsequence of A and B
*/
int longestCommonSubsequence(string &A, string &B) {
// write your code here
int lenA = A.size(), lenB = B.size(), e = 1;
//dp[i][j] represents LCS in first i chars in A and first j chars in B;
//dp[i][j] = dp[i - 1][j - 1] + 1, if A[i] == B[j]
//otherwise, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1])
//base case: dp[i][0] = 0, dp[0][j] = 0
vector<vector<int>> dp(2, vector<int>(lenB + 1, 0));
for(int i = 0; i < lenA; ++i, e ^= 1)
{
for(int j = 0; j < lenB; ++j)
{
dp[e][j + 1] = A[i] == B[j]? dp[e ^ 1][j] + 1: max(dp[e][j], dp[e ^ 1][j + 1]);
}
}
return dp[e ^ 1][lenB];
}
};

No comments:

Post a Comment