经典的DP问题,解法也可以扩展到很多其他的题目。假设输入字符串为s1和s2,我们用DP[i][j]表示s1中前i个字符和s2中前j个字符的LCS,我们有递推公式:
- DP[i][j] = DP[i - 1][j - 1] + 1, if s1[i] == s2[j]
- else, DP[i][j] = max(DP[i - 1][j], DP[i][j - 1])
假设输入串长度分别为n和m,时间和空间复杂度均为O(m * n),代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
/** | |
* @param A: A string | |
* @param B: A string | |
* @return: The length of longest common subsequence of A and B | |
*/ | |
int longestCommonSubsequence(string &A, string &B) { | |
// write your code here | |
int lenA = A.size(), lenB = B.size(); | |
//dp[i][j] represents LCS in first i chars in A and first j chars in B; | |
//dp[i][j] = dp[i - 1][j - 1] + 1, if A[i] == B[j] | |
//otherwise, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) | |
//base case: dp[i][0] = 0, dp[0][j] = 0 | |
vector<vector<int>> dp(lenA + 1, vector<int>(lenB + 1, 0)); | |
for(int i = 0; i < lenA; ++i) | |
{ | |
for(int j = 0; j < lenB; ++j) | |
{ | |
dp[i + 1][j + 1] = A[i] == B[j]? dp[i][j] + 1: max(dp[i + 1][j], dp[i][j + 1]); | |
} | |
} | |
return dp[lenA][lenB]; | |
} | |
}; |
和Longest Common Substring类似,我们可以用滚动数组进行优化,空间可以优化到O(n),代码入下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
/** | |
* @param A: A string | |
* @param B: A string | |
* @return: The length of longest common subsequence of A and B | |
*/ | |
int longestCommonSubsequence(string &A, string &B) { | |
// write your code here | |
int lenA = A.size(), lenB = B.size(), e = 1; | |
//dp[i][j] represents LCS in first i chars in A and first j chars in B; | |
//dp[i][j] = dp[i - 1][j - 1] + 1, if A[i] == B[j] | |
//otherwise, dp[i][j] = max(dp[i - 1][j], dp[i][j - 1]) | |
//base case: dp[i][0] = 0, dp[0][j] = 0 | |
vector<vector<int>> dp(2, vector<int>(lenB + 1, 0)); | |
for(int i = 0; i < lenA; ++i, e ^= 1) | |
{ | |
for(int j = 0; j < lenB; ++j) | |
{ | |
dp[e][j + 1] = A[i] == B[j]? dp[e ^ 1][j] + 1: max(dp[e][j], dp[e ^ 1][j + 1]); | |
} | |
} | |
return dp[e ^ 1][lenB]; | |
} | |
}; |
No comments:
Post a Comment