题目链接
这道题要求两点:
- 所有人按照quality等比例支付工资
- 所有人必须满足最低薪酬
所以对于一个K个人的group,这K个人的总工资是取决于两项的:
- K个人当中,wage/quality的比例最高的
- K个人的总quality
那么我们可以对所有人按照wage/quality的比例从小到大排序。并且维护一个根据quality比较的max heap。这样当我们遍历到第i个人,他的wage/quality是目前为止最高的,所以其为决定整体工资的第一个因素(后面的元素我们不需要考虑,因为其wage/quality比例更大,放进去当前元素就无法决定最大比例了)。在这个条件下,如果heap中元素大于K个,我们把quality最高的踢掉一直到size为K,这样第二个因素可以控制到最小,那么两者相乘就是当前wage/quality比例下的K个人的最少工资。那么我们遍历完这所有的wage/quality比例,在所有最少工资中取最小的即可。时间复杂度O(N * log N),代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
double mincostToHireWorkers(vector<int>& quality, vector<int>& wage, int K) { | |
int len = quality.size(); | |
vector<int> idxs; | |
for (int i = 0; i < len; ++i)idxs.push_back(i); | |
auto comp = [&](const int& lhs, const int& rhs) | |
{ | |
return getRatio(quality[lhs], wage[lhs]) < getRatio(quality[rhs], wage[rhs]); | |
}; | |
sort(idxs.begin(), idxs.end(), comp); | |
//find the lowest total quality for current ratio | |
//we alwasy pick the largest ratio as the ratio | |
//of current group since we need to meet the minimum | |
//wage request for everyone | |
priority_queue<int> pq; | |
double res = 10e9; | |
int totalQ = 0; | |
for (const auto& idx : idxs) | |
{ | |
double ratio = getRatio(quality[idx], wage[idx]); | |
int currQ = quality[idx]; | |
if (pq.size() == K) | |
{ | |
totalQ -= pq.top(); | |
pq.pop(); | |
} | |
//bug: pop first then push, otherwise new pushed element might be popped out | |
totalQ += currQ; | |
pq.push(currQ); | |
if (pq.size() == K)res = min(res, totalQ * ratio); | |
} | |
return res; | |
} | |
private: | |
double getRatio(int q, int w) | |
{ | |
return static_cast<double>(w) / static_cast<double>(q); | |
} | |
}; |
No comments:
Post a Comment