和之前题目不一样的是这道题目变成了有向图。那么变为有向图之后,我们对directed tree加上一条边和undirected tree有什么区别呢。可能会有以下三种状况:
- 仍然存在环,比如[1, 2], [2,3], [3,1]
- 不存在环但是存在某一个节点有两个父节点,比如[2,1], [3,1], [2, 3]
- 1和2的情况同时存在,比如[2,1], [3,1], [1,4], [4,2]
所以和I的解法不同,这里每一种情况我们都要判断并删除相应的边,具体算法如下:
- 如果是情况1,根据题目的要求,我们删除边e。e满足条件,按照题目给定的边的顺序依次加上边,当加上e的时候,第一次出现环
- 如果是情况2,删除一条通向v的边。v满足条件其有两个父节点。e满足条件其在题目给定的边的顺序中比另外一条通向v的边出现较后
- 如果是情况3,删除一条通向v的边。v满足条件其有两个父节点。e满足条件其在环上
我们只需要对这三种情况分别处理即可,DFS显然可以解,我们只需要记录环的路径(如果存在)和拥有两个父节点的v的对应的入射边(如果存在)。然后对于以上三种情况分别处理。但是DFS的解法需要我们建图。和I一样,我们可以用Union Find,这样省去了建图的步骤更为效率。在Union Find中我们也要对环和拥有两个父节点的v分别记录然后根据以上算法处理。关于Union Find的介绍可以参考这篇文章。代码如下:
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
class Solution { | |
public: | |
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) { | |
int n = edges.size(); | |
m_uf = vector<int>(n + 1, 0); | |
m_sz = vector<int>(n + 1, 1); | |
m_parent = vector<int>(n + 1, -1); | |
for(int i = 0; i <= n; ++i) | |
m_uf[i] = i; | |
//first check if there is node with two parents | |
vector<vector<int>> culprits; | |
for(auto& e : edges) | |
{ | |
int from = e[0], to = e[1]; | |
if(m_parent[to] != -1) | |
{ | |
culprits.push_back({m_parent[to], to}); | |
culprits.push_back(e); | |
} | |
m_parent[to] = from; | |
} | |
//check circle | |
for(auto& e : edges) | |
{ | |
int from = e[0], to = e[1]; | |
if(culprits.size() && to != culprits[0][1]) | |
connect(from, to); | |
else if(culprits.empty()) | |
{ | |
if(find(from, to)) | |
return e; | |
connect(from, to); | |
} | |
} | |
if(find(culprits[0][0], culprits[0][1])) | |
return culprits.front(); | |
else | |
return culprits.back(); | |
} | |
private: | |
vector<int> m_uf; | |
vector<int> m_sz; | |
vector<int> m_parent; | |
int root(int i) | |
{ | |
if(m_uf[i] == i) | |
return i; | |
int r = root(m_uf[i]); | |
m_uf[i] = r; | |
return r; | |
} | |
void connect(int i, int j) | |
{ | |
int ri = root(i), rj = root(j); | |
if(ri != rj) | |
{ | |
if(m_sz[ri] >= m_sz[rj]) | |
{ | |
m_uf[rj] = ri; | |
m_sz[ri] += m_sz[rj]; | |
} | |
else | |
{ | |
m_uf[ri] = rj; | |
m_sz[rj] += m_sz[ri]; | |
} | |
} | |
} | |
bool find(int i, int j) | |
{ | |
return root(i) == root(j); | |
} | |
}; |
No comments:
Post a Comment