Sunday, October 8, 2017

[LeetCode]Coin Change


knapsack problem类似的问题,这里求的就是要让背包正好填满所需的最少物品数量。每物品可以用无限多个,所以就是无界背包问题。用DP[i][j]表示用前i + 1个物品填满容量为j的背包所需的最少物品数量,c[i]为第i + 1个物品的体积。那么递推公式为;

  • DP[i][j] = min(DP[i - 1][j], DP[i][j - c[i]] + 1)
假设体积为V,物品数量为n,时间复杂度为O(n * V),空间复杂度可以优化为O(V),代码如下:

class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
if(!amount)return 0;
int n = coins.size();
vector<int> dp(amount + 1, amount + 1);
dp[0] = 0;
for(int i = 0; i < n; ++i)
{
int coin = coins[i];
for(int j = coin; j <= amount; ++j)
{
dp[j] = min(dp[j], 1 + dp[j - coin]);
}
}
return dp[amount] <= amount? dp[amount]: -1;
}
};
view raw Coin Change.cpp hosted with ❤ by GitHub

这道题递推公式可以有很多种,比如用DP[i]表示填满容量为i的背包所需的最少物品数量,我们还可以得到另一个递推公式:

  • DP[i] = min(DP[i - c[j]] + 1), where c[j]为第j + 1个物品的体积,且c[j] <= i
时间复杂度和空间复杂度同上,代码如下:


class Solution {
public:
int coinChange(vector<int>& coins, int amount) {
int len = coins.size();
vector<int> dp(amount + 1, amount + 1);
dp[0] = 0;
for(int i = 1; i <= amount; ++i)
{
for(int j = 0; j < len; ++j)
{
int coin = coins[j];
if(coin <= i)
dp[i] = min(dp[i], dp[i - coin] + 1);
}
}
return dp[amount] == amount + 1? -1: dp[amount];
}
};

No comments:

Post a Comment