Tuesday, October 16, 2018

[POJ]2513 Colored Sticks


You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?

如果我们把不同的颜色看做顶点,对于一条stick,我们把两端的颜色对应的顶点连上边。这道题就是要我们找有没有一条路径只经过所有边一次,这就是欧拉路径的问题。我们在这一篇文章讲过,一个图存在欧拉路径的充要条件是:

  • 图是联通的
  • 度数为奇数的点为2,其余度数均为偶数
所以在这里我们只需要检查图的这两个性质。鉴于输入的数据量很大,我们用Trie来统计每个颜色节点的度数,Union Find可以帮助我们检查图的联通性。时间复杂度 O(N), N为stick的数量。代码如下:

//2513
/*
You are given a bunch of wooden sticks. Each endpoint of each stick is colored with some color. Is it possible to align the sticks in a straight line such that the colors of the endpoints that touch are of the same color?
Input
Input is a sequence of lines, each line contains two words, separated by spaces, giving the colors of the endpoints of one stick. A word is a sequence of lowercase letters no longer than 10 characters. There is no more than 250000 sticks.
Output
If the sticks can be aligned in the desired way, output a single line saying Possible, otherwise output Impossible.
*/
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int MAXN = 500005;
const int MAXL = 15;
int colors[MAXN];
int cnt;
struct Node
{
Node* children[26];
int id;
Node()
{
memset(children, 0, sizeof(children));
id = -1;
}
};
class Trie
{
public:
Trie()
{
root = new Node();
}
~Trie()
{
clear(root);
}
int insert(char* s)
{
Node* curr = root;
int len = strlen(s);
for(int i = 0; i < len; ++i)
{
int idx = s[i] - 'a';
if(!curr->children[idx])
curr->children[idx] = new Node();
curr = curr->children[idx];
}
if(curr->id == -1)//if it is a new color
curr->id = cnt++;
++colors[curr->id];
return curr->id;
}
private:
Node* root;
void clear(Node* curr)
{
if(!curr)return;
for(int i = 0; i < 26; ++i)
clear(curr->children[i]);
delete curr;
}
};
class UnionFind
{
public:
UnionFind(int n)
{
m_uf = vector<int>(n, 0);
m_sz = vector<int>(n, 1);
for(int i = 0; i < n; ++i)
m_uf[i] = i;
}
void connect(int i, int j)
{
int rootI = root(i), rootJ = root(j);
if(rootI == rootJ)return;
if (m_sz[rootI] <= m_sz[rootJ])
{
m_uf[rootI] = rootJ;
m_sz[rootJ] += m_sz[rootI];
}
else
{
m_uf[rootJ] = rootI;
m_sz[rootI] += m_sz[rootJ];
}
}
bool find(int i, int j)
{
return root(i) == root(j);
}
private:
vector<int> m_uf;
vector<int> m_sz;
int root(int i)
{
if (m_uf[i] == i)return i;
int r = root(m_uf[i]);
m_uf[i] = r;
return r;
}
};
bool hasEulerPath(UnionFind& uf)
{
//if we have no stick return ture
if(!cnt)return true;
//make sure graph is connected
for(int i = 1; i < cnt; ++i)
if(!uf.find(0, i))return false;
//make sure # of nodes with odd degree is 2 or 0
int odd = 0;
for(int i = 0; i < cnt; ++i)
if(colors[i] % 2)++odd;
return !odd || odd == 2;
}
int main()
{
cnt = 0;
char A[MAXL], B[MAXL];
Trie trie;
UnionFind uf(MAXN);
memset(colors, 0, sizeof(colors));
while(~scanf("%s%s", A, B))
{
int idA = trie.insert(A), idB = trie.insert(B);
uf.connect(idA, idB);
}
puts(hasEulerPath(uf) ? "Possible" : "Impossible");
return 0;
}

No comments:

Post a Comment